228 research outputs found

    An Algorithmic Approach to Information and Meaning

    Get PDF
    I will survey some matters of relevance to a philosophical discussion of information, taking into account developments in algorithmic information theory (AIT). I will propose that meaning is deep in the sense of Bennett's logical depth, and that algorithmic probability may provide the stability needed for a robust algorithmic definition of meaning, one that takes into consideration the interpretation and the recipient's own knowledge encoded in the story attached to a message.Comment: preprint reviewed version closer to the version accepted by the journa

    Training-free Measures Based on Algorithmic Probability Identify High Nucleosome Occupancy in DNA Sequences

    Full text link
    We introduce and study a set of training-free methods of information-theoretic and algorithmic complexity nature applied to DNA sequences to identify their potential capabilities to determine nucleosomal binding sites. We test our measures on well-studied genomic sequences of different sizes drawn from different sources. The measures reveal the known in vivo versus in vitro predictive discrepancies and uncover their potential to pinpoint (high) nucleosome occupancy. We explore different possible signals within and beyond the nucleosome length and find that complexity indices are informative of nucleosome occupancy. We compare against the gold standard (Kaplan model) and find similar and complementary results with the main difference that our sequence complexity approach. For example, for high occupancy, complexity-based scores outperform the Kaplan model for predicting binding representing a significant advancement in predicting the highest nucleosome occupancy following a training-free approach.Comment: 8 pages main text (4 figures), 12 total with Supplementary (1 figure

    On the possible Computational Power of the Human Mind

    Full text link
    The aim of this paper is to address the question: Can an artificial neural network (ANN) model be used as a possible characterization of the power of the human mind? We will discuss what might be the relationship between such a model and its natural counterpart. A possible characterization of the different power capabilities of the mind is suggested in terms of the information contained (in its computational complexity) or achievable by it. Such characterization takes advantage of recent results based on natural neural networks (NNN) and the computational power of arbitrary artificial neural networks (ANN). The possible acceptance of neural networks as the model of the human mind's operation makes the aforementioned quite relevant.Comment: Complexity, Science and Society Conference, 2005, University of Liverpool, UK. 23 page

    On the Dynamic Qualitative Behaviour of Universal Computation

    Full text link
    We explore the possible connections between the dynamic behaviour of a system and Turing universality in terms of the system's ability to (effectively) transmit and manipulate information. Some arguments will be provided using a defined compression-based transition coefficient which quantifies the sensitivity of a system to being programmed. In the same spirit, a list of conjectures concerning the ability of Busy Beaver Turing machines to perform universal computation will be formulated. The main working hypothesis is that universality is deeply connected to the qualitative behaviour of a system, particularly to its ability to react to external stimulus--as it needs to be programmed--and to its capacity for transmitting this information.Comment: forthcoming in Complex Systems vol. 2
    corecore